

Electronics Merit Badge Class 3

Requirement 4 A & B

What makes Digital Electronics "Digital"? How is this different than an "Analog" circuit?

How would you use a digital circuit to control something?

Electronics Merit Badge Class 3

2

Digital Electronics

Computers use digital electronics.

Computers equate voltages with logical values. This is how electronic computer circuits can be made to do counting and other 'math' functions.

 $5 \text{ volts} = \log (a 1) \text{ and } 0 \text{ volts} (ground) = \log (a 1) 0$

Computers use Transistors to act as logical switches to do counting.

Requirement 4 A & B

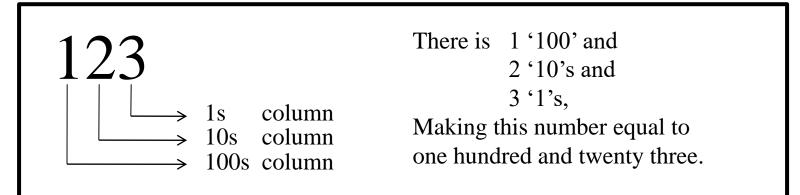
What is the "**Decimal**" number system?

What is the "**Binary**" number system?

What is the "**Hexadecima**l" number system?

9/8/2018

Electronics Merit Badge Class 3

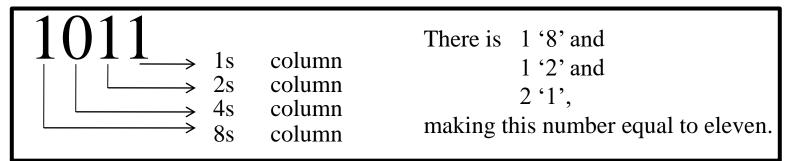


4

Requirement 4B

Decimal – Base 10

- In base 10, there are 10 unique digits (0-9).
- When writing large numbers (more that 1 digit), each column represents a value 10 times larger than the previous column.
- We say, how many 1's, how many 10's and how many 100's are there?


9/8/2018

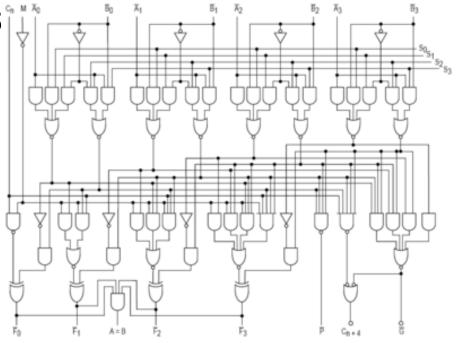
Electronics Merit Badge Class 3

emeritbad

Requirement 4B

- **Binary Base 2** In base 2 (binary) there are two numbers, 0 and 1.
- When writing large numbers (more that 1 digit), each column represents a value 2 times larger than the previous column.
- We say, how many 128s, how many 64s how many 32s, how many 16s, how many 8s, how many 4s, how many 2s and how many 1s are there?

Electronics Merit Badge Class 3


6

Digital Electronics

A **BIT** is the basic unit of **DATA** in computing and digital electronics.

A **BYTE** is 8 BITS long. **WORD**s are made of Bytes- 2, 4 or 8 BYTES long .

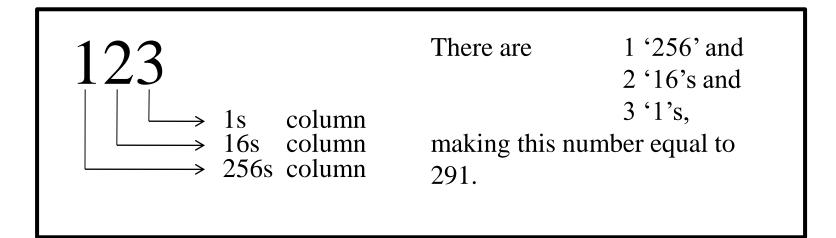
Kilobyte (Kb) is 1,024 Bytes (1 Thousand) Megabyte is 1,048,576 Bytes (1 Million) Gigabyte is 1,073

emeritba

Counting to 16 in Binary

number	16	8	4	2	1	Binary
0	0	0	0	0	0	00000
1	0	0	0	0	1	00001
2	0	0	0	1	0	00010
3	0	0	0	1	1	00011
4	0	0	1	0	0	00100
5	0	0	1	0	1	00101
6	0	0	1	1	0	00110
7	0	0	1	1	1	00111
8	0	1	0	0	0	01000
9	0	1	0	0	1	01001
10	0	1	0	1	0	01010
11	0	1	0	1	1	01011
12	0	1	1	0	0	01100
13	0	1	1	0	1	01101
14	0	1	1	1	0	01110
15	0	1	1	1	1	01111
16	1	0	0	0	0	10000

Electronics Merit Badge Class 3



8

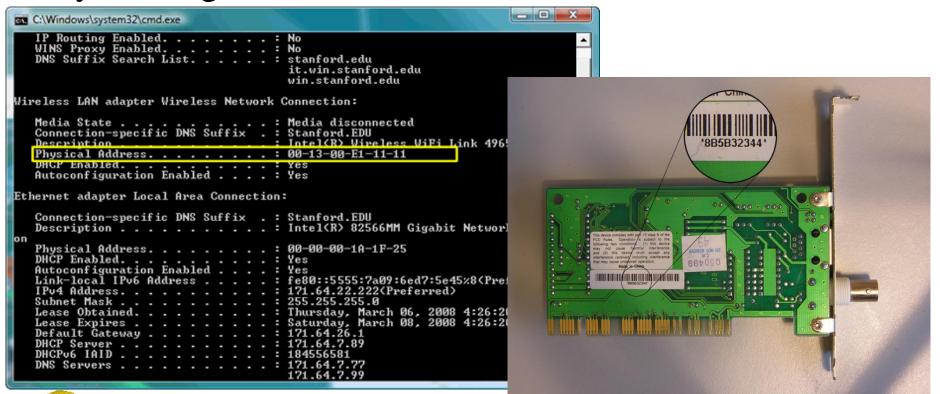
Requirement 4B

Hexadecimal - Base 16

- Hexadecimal represents numbers as base 16.
- It is easier to write and read a large number by describing it in Hex rather than in Binary.
- Each number column is a power of 16 higher.
- The digits for hexadecimal are 0-9, A,B,C,D,E,F.

9

Counting to 16 in Binary AND Hex


Decimal	16	8	4	2	1	Binary	Hex
0	0	0	0	0	0	0000000	0
1	0	0	0	0	1	0000001	1
2	0	0	0	1	0	0000010	2
3	0	0	0	1	1	00000011	3
4	0	0	1	0	0	00000100	4
5	0	0	1	0	1	00000101	5
6	0	0	1	1	0	00000110	6
7	0	0	1	1	1	00000111	7
8	0	1	0	0	0	00001000	8
9	0	1	0	0	1	00001001	9
10	0	1	0	1	0	00001010	Α
11	0	1	0	1	1	00001011	В
12	0	1	1	0	0	00001100	С
13	0	1	1	0	1	00001101	D
14	0	1	1	1	0	00001110	Ε
15	0	1	1	1	1	00001111	F
16	1	0	0	0	0	00010000	10

The MAC address; An example of Hexadecimal

• Because base 16 is an even multiple of base 2, an 8 digit base 2 number can be represented in 2 characters. An Ethernet adaptor's physical address is a value represented by 6- 2 digit Hex numbers.

Electronics Merit Badge Class 3

9/8/2018

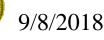
Binarv codes for alpha-mumeric symbols.

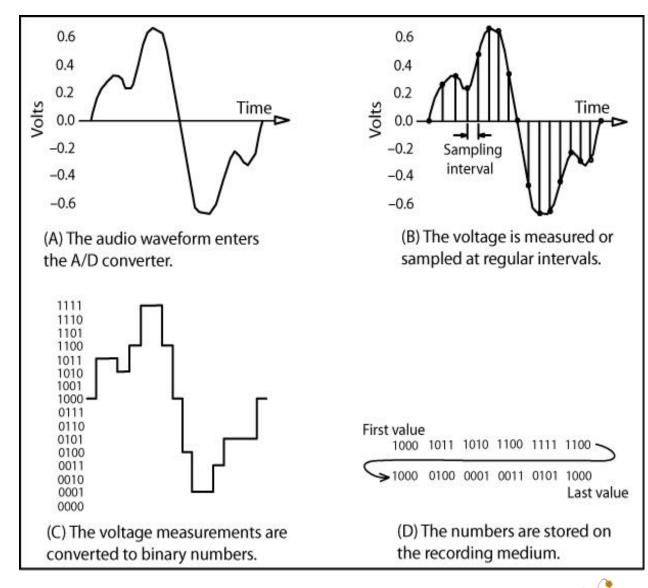
Decimal - Binary - Octal - Hex - ASCII

Conversion Chart

ecimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASC
0	00000000	000	00	NUL	32	00100000	040	20	SP	64	01000000	100	40	@	96	01100000	140	60	•
1	00000001	001	01	SOH	33	00100001	041	21	1	65	01000001	101	41	Α	97	01100001	141	61	а
2	00000010	002	02	STX	34	00100010	042	22		66	01000010	102	42	В	98	01100010	142	62	b
3	00000011	003	03	ETX	35	00100011	043	23	#	67	01000011	103	43	С	99	01100011	143	63	с
4	00000100	004	04	EOT	36	00100100	044	24	\$	68	01000100	104	44	D	100	01100100	144	64	d
5	00000101	005	05	ENQ	37	00100101	045	25	%	69	01000101	105	45	E	101	01100101	145	65	е
6	00000110	006	06	ACK	38	00100110	046	26	&	70	01000110	106	46	F	102	01100110	146	66	f
7	00000111	007	07	BEL	39	00100111	047	27		71	01000111	107	47	G	103	01100111	147	67	g
8	00001000	010	08	BS	40	00101000	050	28	(72	01001000	110	48	Н	104	01101000	150	68	h
9	00001001	011	09	HT	41	00101001	051	29)	73	01001001	111	49	1	105	01101001	151	69	i
10	00001010	012	0 A	LF	42	00101010	052	2A	*	74	01001010	112	4A	J	106	01101010	152	6A	j
11	00001011	013	0B	VT	43	00101011	053	2B	+	75	01001011	113	4B	K	107	01101011	153	6B	k
12	00001100	014	0C	FF	44	00101100	054	2C		76	01001100	114	4C	L	108	01101100	154	6C	1
13	00001101	015	0D	CR	45	00101101	055	2D	-	77	01001101	115	4D	M	109	01101101	155	6D	m
14	00001110	016	0E	SO	46	00101110	056	2E		78	01001110	116	4E	N	110	01101110	156	6E	n
15	00001111	017	0F	SI	47	00101111	057	2F	1	79	01001111	117	4F	0	111	01101111	157	6F	0
16	00010000	020	10	DLE	48	00110000	060	30	0	80	01010000	120	50	Р	112	01110000	160	70	р
17	00010001	021	11	DC1	49	00110001	061	31	1	81	01010001	121	51	Q	113	01110001	161	71	q
18	00010010	022	12	DC2	50	00110010	062	32	2	82	01010010	122	52	R	114	01110010	162	72	r
19	00010011	023	13	DC3	51	00110011	063	33	3	83	01010011	123	53	S	115	01110011	163	73	s
20	00010100	024	14	DC4	52	00110100	064	34	4	84	01010100	124	54	т	116	01110100	164	74	t
21	00010101	025	15	NAK	53	00110101	065	35	5	85	01010101	125	55	U	117	01110101	165	75	u
22	00010110	026	16	SYN	54	00110110	066	36	6	86	01010110	126	56	V	118	01110110	166	76	v
23	00010111	027	17	ETB	55	00110111	067	37	7	87	01010111	127	57	W	119	01110111	167	77	w
24	00011000	030	18	CAN	56	00111000	070	38	8	88	01011000	130	58	Х	120	01111000	170	78	х
25	00011001	031	19	EM	57	00111001	071	39	9	89	01011001	131	59	Υ	121	01111001	171	79	у
26	00011010	032	1 A	SUB	58	00111010	072	ЗA	:	90	01011010	132	5A	Z	122	01111010	172	7A	z
27	00011011	033	1B	ESC	59	00111011	073	3B	;	91	01011011	133	5B	[123	01111011	173	7B	{
28	00011100	034	1C	FS	60	00111100	074	3C	<	92	01011100	134	5C	1	124	01111100	174	7C	1
29	00011101	035	1D	GS	61	00111101	075	3D	=	93	01011101	135	5D	1	125	01111101	175	7D	}
30	00011110	036	1E	RS	62	00111110	076	3E	>	94	01011110	136	5E	٨	126	01111110	176	7E	~
31	00011111	037	1F	US	63	00111111	077	3F	?	95	01011111	137	5F	_	127	01111111	177	7F	DEL
1										-					-				

Converting Analog signals to Digital


Analog signals can be converted to digital signals by means of "Sampling".


Digital words that represent an analog signal can be converted back by decoding the bits back to a voltage level and filtering the resulting square wave to smooth the edges.

The higher the sample frequency, the more accurate the representation.

The larger the digital word, the more accurate the representation.

K

emeritbadge

13

Requirement 4B Part 2

Requirement 4 B

Convert several numbers from Decimal to Binary and Hexadecimal values.

Requirement 4B Part 2

Binary	Decimal	Hexadecimal
0000 1111	15	0F
0001 0001	17	11
1000 1110	142	8E
1111 1111	255	FF
0011 1111		3F
0001 0110	22	
	96	60

Compute the missing value:

Requirement 4B Part 2

Binary	Decimal	Hexadecimal
0000 1111	15	0F
0001 0001	17	11
1000 1110	142	8E
1111 1111	255	FF
0011 1111	63	3F
0001 0110	22	
	96	60

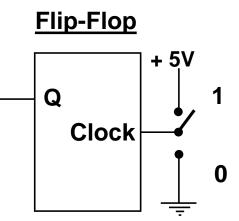
Compute the missing value:

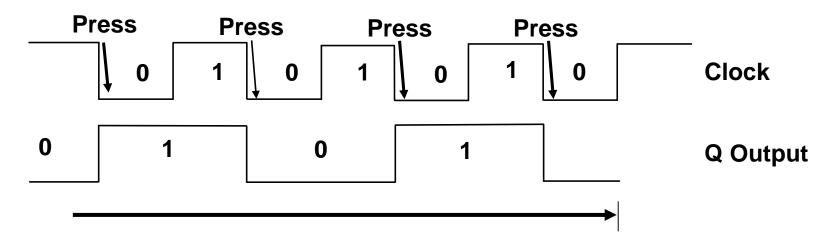
Binary	Decimal	Hexadecimal
0000 1111	15	0F
0001 0001	17	11
1000 1110	142	8E
1111 1111	255	FF
0011 1111	63	3F
0001 0110	22	16
	96	60

Compute the missing value:

Requirement 4B Part 2

Binary	Decimal	Hexadecimal
0000 1111	15	0F
0001 0001	17	11
1000 1110	142	8E
1111 1111	255	FF
0011 1111	63	3F
0001 0110	22	16
0110 0000	96	60

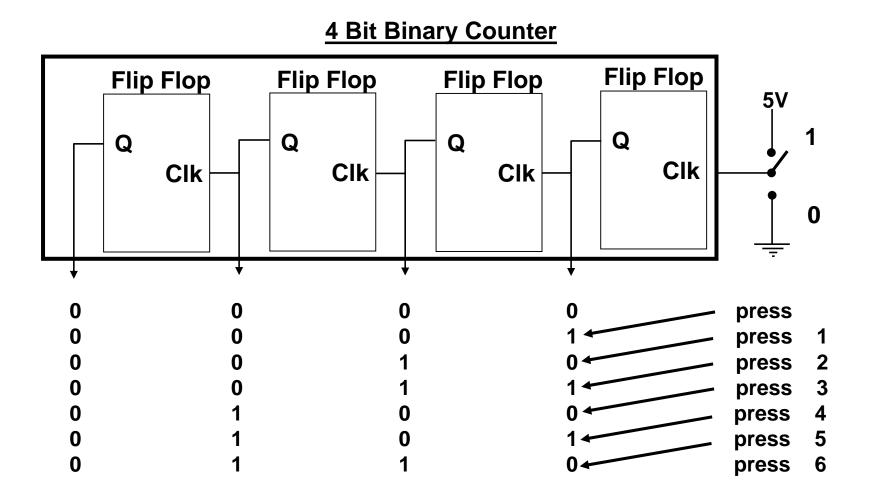




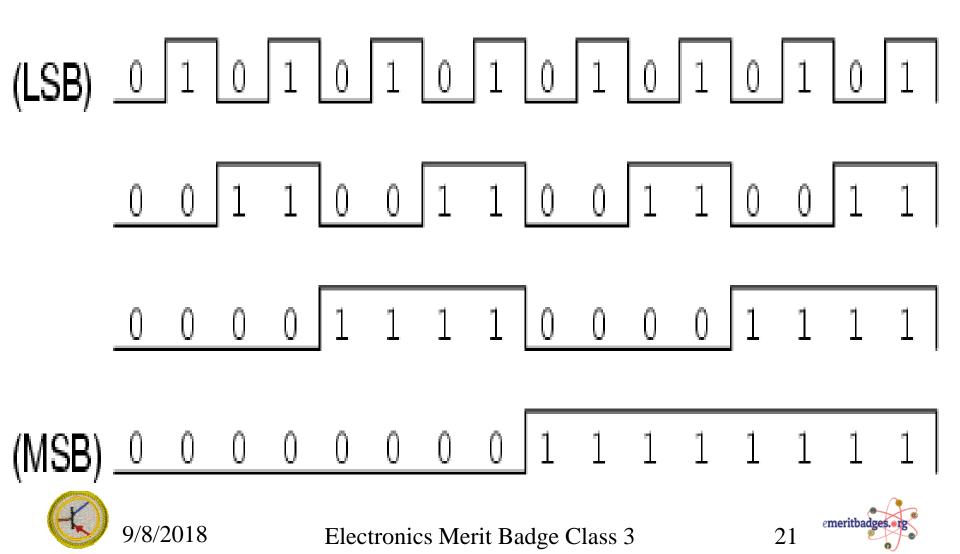
FLIP-FLOP

A FLIP-FLOP is a device that changes state each time it is switched in the same direction. Press the switch, the clock goes to 0 volts (logical 0). Release the switch, the clock goes to 5 volts (logical 1). The output (Q) changes state on each 1 to 0 transition of the clock.

A flip-flop basically divides the clock by 2. It takes 2 clock transitions to make the output change once.



Binary Counter using Flip-Flops

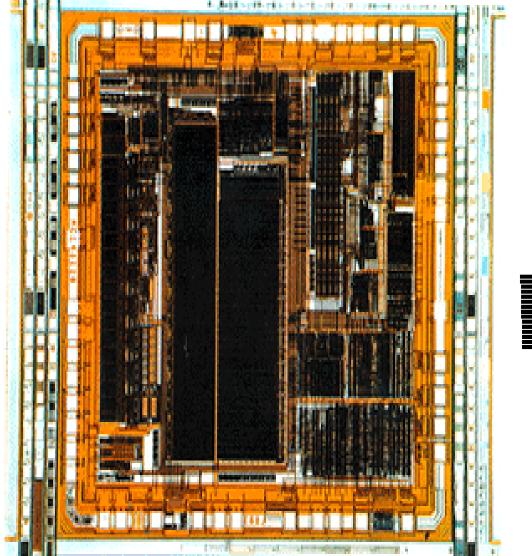


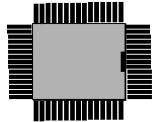
Binary Counter using Flip-Flops

4 Bit Binary Counter

Integrated Circuits

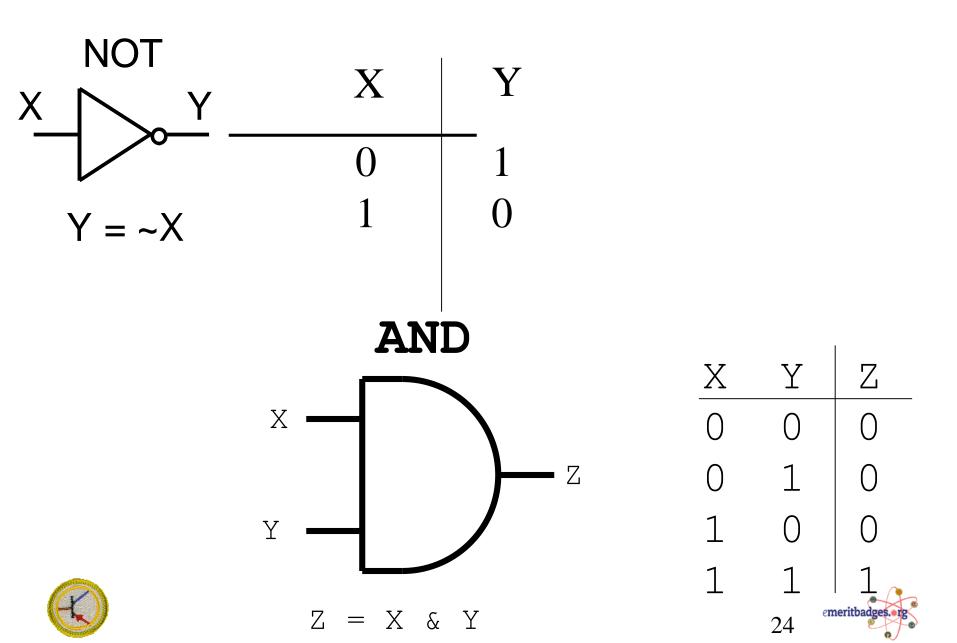
An integrated circuit (IC) consists of multiple transistors. The number of transistors can vary from just a few (circuits shown below), to several hundred million that are in a Pentium microprocessor.

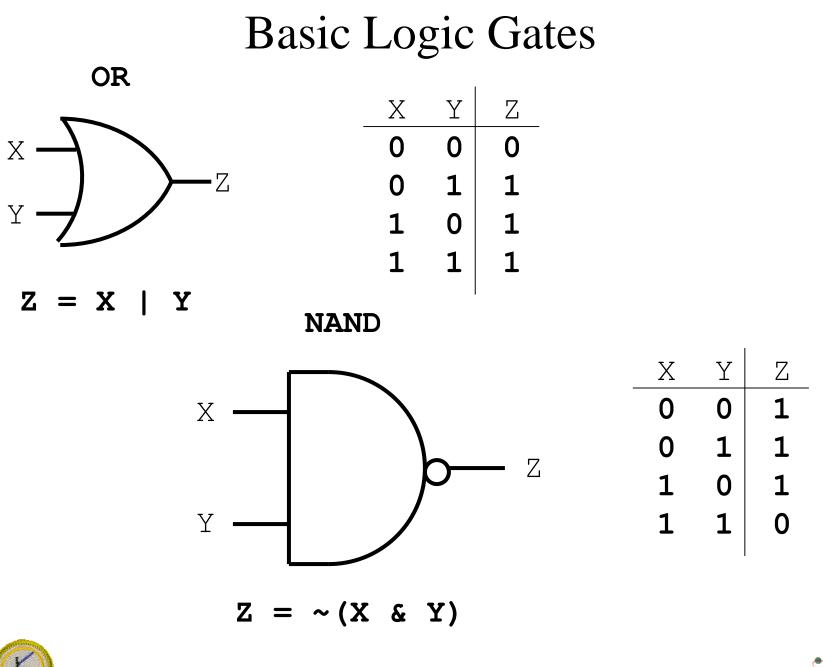

This IC has 6 inverters **Functions** 6 Transistors in one IC An inverter contains **Inverters** 6 Transistors = 36 total Gates Flip flops Counters Memory **MPU** Watch ICs **Calculators** ICs Microwave Timer ICs Radio ICs **Dialer** ICs Car Controller ICs


emeritbadg

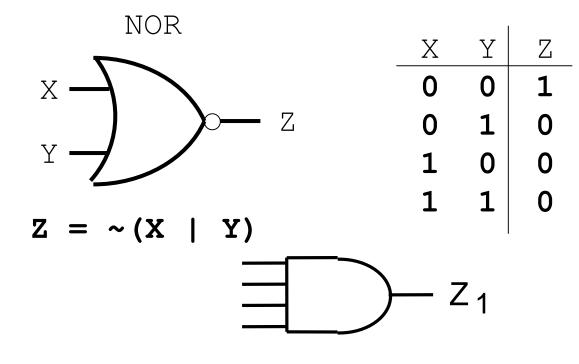
22

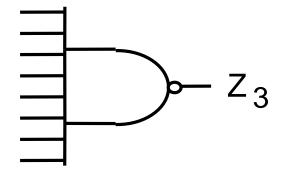
Microprocessor Integrated Circuit: 60,000 Transistors



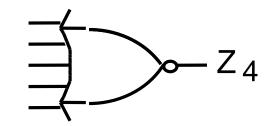


Basic Logic Gates

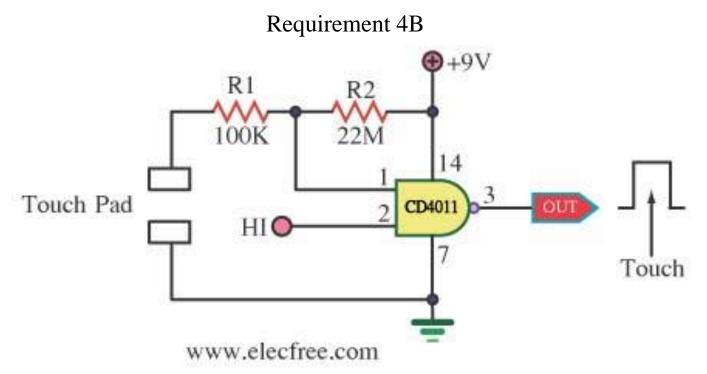




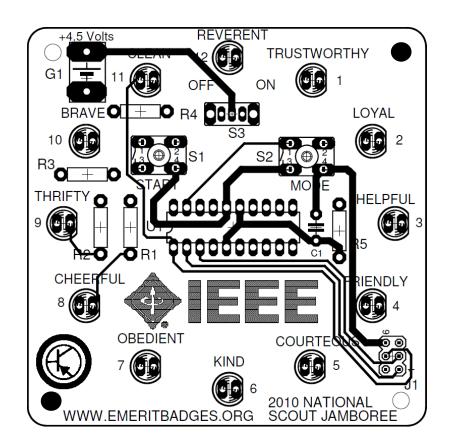
Basic Logic Gates



Multiple input gates



Digital control Application; Simple digital touch switch with an NAND gate

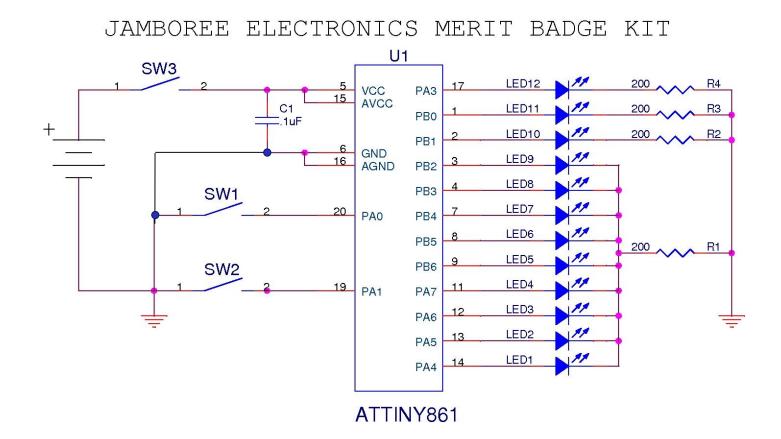

Here is a simple circuit that will turn on it's output when a finger is touched to the touch pad. R1 and R2 form a "Voltage Divider". A very small change (Capacitance of your finger) causes input to go High and triggers the NAND gate which goes low. A buffer inverter turns the output High.

Electronics Merit Badge Class 3

27

9/8/2018

Microprocessor Controlled Counter


The kit contains a microprocessor that will drive 12 LEDs in a diminishing pattern. The LEDs can be displayed in many different pattern modes. Each mode starts as a fast pattern, and eventually slows to a stop.

Microprocessor Controlled Counter

Requirement 4B

Requirement 6

Requirement 6

Find out about three career opportunities in electronics.

Discuss with and explain to your counselor what training and education are needed for each position.

Careers in Electronics IEEE emeritbadges Project 2017 National Scout Jamboree

Electronics - Uses

- Computers, servers, networks
- Control of devices and machines motors, robots, airplanes, cars, rockets, appliances
- Performing digital calculations calculators, encryption, error detection/correction
- Storing and retrieving information memory, CDs, DVDs, tapes, DNA (!)
- Communications radio, TV, telephones, radar, satellites, Internet
- Medical Equipment CAT and PET scanners, MRI, x-ray, EKG, EEG machines, pacemakers
- Manufacturing, testing

Electronics - Uses

- Lighting, heating, cooling, security
- Entertainment photography, music, video generation, ۲ storage, reproduction
- Power generation and distribution power plants, electric grid
- Navigation (GPS), Transportation \bullet
- Military/defense communications, weapons, navigation •
- Converting energy from one type to another audio output • to speakers and headphones, MEMS machines to movement, lasers to light, etc.

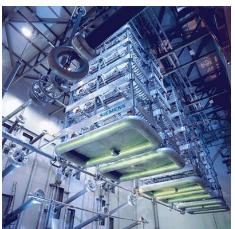
- Computing
 - System design
 - IC design
 - Computer Graphics
 - Cloud computing,

- Network Security
- "Internet of Things"
- Components

- Transportation
 - Power storage
 - Programming, Artificial Intelligence
 - Sensor development

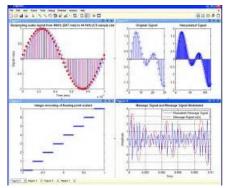
- Entertainment
- Navigation
- Control systems
- Aircraft
- Railroads

- Medical and Emergency Medical Services
 - Transducers, sensors
 - Diagnostic machines
 - Blood pressure machines
 - Wearables and implantable devices

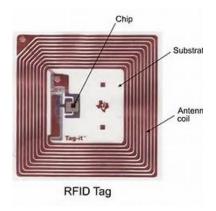


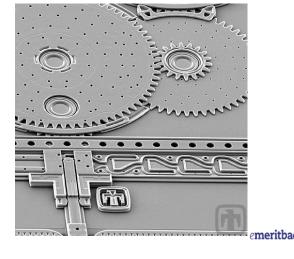
- Power Generation/Distribution
 - "Smart grid" development and "Green Power"
 - "Things" for the "Internet of Things"
 - Renewable energy
 - Fuel cells
 - Nuclear fission, fusion reactor design and operation
 - Network Security
 - Home automation

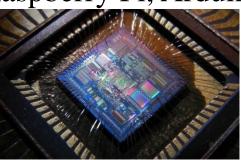
- Military/Defense
 - Communications, RADAR
 - Artificial Intelligence
 - Drones
 - Weapons systems
 - IED/Bomb detection
 - Threat detection/countermeasures
 - Cyber Security
 - Navigation and tracking
 - Control systems
 - Robotics, exoskeletons
 - Nuclear fission reactor operation



- Communications
 - Cell phones and infrastructure
 - Internet and infrastructure
 - Satellites
 - Radio public safety, marine
 - Coding, encryption, error detection/correction
 - Digital Signal Processing
 - Modulation/demodulation







- Components
 - ICs (Integrated Circuits)
 - Microcontrollers e. g., Raspberry Pi, Arduino
 - Passives
 - Connectors, cables
 - Displays
 - Packaging
 - MEMS micro electromechanical machines
 - Antennas
 - RFID

- Entertainment
 - Audio/video
 - Digital assistants
 - Cable/satellite TV
 - WiFi, networking

- DRM digital rights management
- Gaming

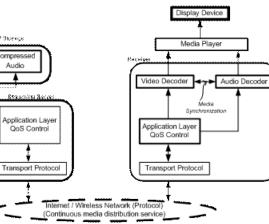
Time

Stamping

Block

• Special effects

Video

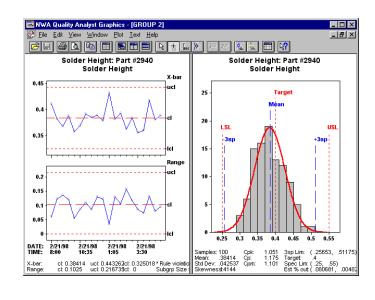

Video Encoder

Audio Encode

Carcal Aristiving ² Storage

Compress

Audio



- Manufacturing
 - Robotics
 - Process controls, PLCs
 - Quality control
 - Reliability analysis
 - Networking

Future Careers in Electronics

- Let's dream a little...
- "Rocket Man" backup pilot for pilotless Mars tourist flights
- Medical drone pilot directs swallowable repair device to cancer location, "zaps" it
- Materials farm supervisor monitors growth, directs harvest of new materials on Alpha Centauri planet
- Smart Grid load balancing software developer
- Cyber warfare "soldier" counters enemy attacks, perhaps initiates...

Your ideas??

- Job title: _____
- Salary: _____
- Description/duties: ______

Preparing for Careers in Electronics

- High School
 - Math Classes
 - Science Classes
 - Tech Ed Classes
- College 4 year Bachelor of Science (BS) EE degree in Electronics Engineering
 - Math
 - Physics
 - Chemistry
 - Material Science
 - Thermodynamics / Fluid
 - Mechanics
 - Mechanics Statics and Dynamics

- Computer Aided Design
- Computers
- Analog, Digital circuits, Digital Signal Processing
- IC Design, Signal/Power Integrity
- Control systems
- Power generation/distribution
- English / Humanities / Social Studies / Business / Economics electives

emeritbadge

- Summer jobs / internships
- "Soft skills" –
 communications, public speaking, writing,
 collaboration, teamwork

Electronics Career Resources

- Institute of Electrical and Electronics Engineers (IEEE), <u>www.ieee.org</u>
 - Over 430,000 members worldwide
 - 39 societies dealing with many aspects of Electrical Engineering, from Aerospace & Electronic Systems to Vehicular Technology
 - Sponsors conferences, publishes technical journals
 - Standards development Aerospace, Components, Computers, Devices, EMC, Instr./Measurement, Nanotech, Networking (Ethernet, WiFi), Nuclear, Power/Energy, Robotics, Signal Processing, Vehicular Tech., etc.

Electronics Career Resources

- <u>TryEngineering</u>
- <u>TryComputing</u>
- <u>TryNano</u>
- <u>IEEE Spark</u>
- <u>Coursera</u>
- <u>edX</u>
- <u>American Radio Relay League</u>
 <u>(ARRL)</u>

- <u>IEEE emeritbadges Project</u>
- <u>IEEE Teacher In-Service</u> <u>Program</u>
- <u>FIRST</u>
- Engineer Your Life
- <u>IEEE REACH</u>
- <u>Engineering and Technology</u> <u>History Wiki</u>
- Maker Faire

Electronics Merit Badge Class 3

